3.78 \(\int \frac{(c+d x^2)^{3/2}}{(a+b x^2) \sqrt{e+f x^2}} \, dx\)

Optimal. Leaf size=319 \[ \frac{d \sqrt{e} \sqrt{c+d x^2} \text{EllipticF}\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right ),1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac{c^{3/2} \sqrt{e+f x^2} (b c-a d) \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a b \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac{d x \sqrt{c+d x^2}}{b \sqrt{e+f x^2}}-\frac{d \sqrt{e} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

[Out]

(d*x*Sqrt[c + d*x^2])/(b*Sqrt[e + f*x^2]) - (d*Sqrt[e]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]],
1 - (d*e)/(c*f)])/(b*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (d*Sqrt[e]*Sqrt[c + d*x^
2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(b*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*S
qrt[e + f*x^2]) + (c^(3/2)*(b*c - a*d)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqrt[c]]
, 1 - (c*f)/(d*e)])/(a*b*Sqrt[d]*e*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.175511, antiderivative size = 319, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {545, 422, 418, 492, 411, 539} \[ \frac{c^{3/2} \sqrt{e+f x^2} (b c-a d) \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a b \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac{d x \sqrt{c+d x^2}}{b \sqrt{e+f x^2}}+\frac{d \sqrt{e} \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{d \sqrt{e} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{e+f x^2} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)^(3/2)/((a + b*x^2)*Sqrt[e + f*x^2]),x]

[Out]

(d*x*Sqrt[c + d*x^2])/(b*Sqrt[e + f*x^2]) - (d*Sqrt[e]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]],
1 - (d*e)/(c*f)])/(b*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (d*Sqrt[e]*Sqrt[c + d*x^
2]*EllipticF[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(b*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*S
qrt[e + f*x^2]) + (c^(3/2)*(b*c - a*d)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[(Sqrt[d]*x)/Sqrt[c]]
, 1 - (c*f)/(d*e)])/(a*b*Sqrt[d]*e*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])

Rule 545

Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Dist[d/b, Int[
(c + d*x^2)^(q - 1)*(e + f*x^2)^r, x], x] + Dist[(b*c - a*d)/b, Int[((c + d*x^2)^(q - 1)*(e + f*x^2)^r)/(a + b
*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && GtQ[q, 1]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\left (c+d x^2\right )^{3/2}}{\left (a+b x^2\right ) \sqrt{e+f x^2}} \, dx &=\frac{d \int \frac{\sqrt{c+d x^2}}{\sqrt{e+f x^2}} \, dx}{b}+\frac{(b c-a d) \int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right ) \sqrt{e+f x^2}} \, dx}{b}\\ &=\frac{c^{3/2} (b c-a d) \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a b \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac{(c d) \int \frac{1}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{b}+\frac{d^2 \int \frac{x^2}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx}{b}\\ &=\frac{d x \sqrt{c+d x^2}}{b \sqrt{e+f x^2}}+\frac{d \sqrt{e} \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{c^{3/2} (b c-a d) \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a b \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac{(d e) \int \frac{\sqrt{c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{b}\\ &=\frac{d x \sqrt{c+d x^2}}{b \sqrt{e+f x^2}}-\frac{d \sqrt{e} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{d \sqrt{e} \sqrt{c+d x^2} F\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{b \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{c^{3/2} (b c-a d) \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a b \sqrt{d} e \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}\\ \end{align*}

Mathematica [C]  time = 0.370925, size = 197, normalized size = 0.62 \[ -\frac{i \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \left (-a d (a d f-2 b c f+b d e) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{d}{c}}\right ),\frac{c f}{d e}\right )+a b d^2 e E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )+f (b c-a d)^2 \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )\right )}{a b^2 f \sqrt{\frac{d}{c}} \sqrt{c+d x^2} \sqrt{e+f x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)^(3/2)/((a + b*x^2)*Sqrt[e + f*x^2]),x]

[Out]

((-I)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*(a*b*d^2*e*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - a*d*
(b*d*e - 2*b*c*f + a*d*f)*EllipticF[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + (b*c - a*d)^2*f*EllipticPi[(b*c)/(a
*d), I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(a*b^2*Sqrt[d/c]*f*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.021, size = 341, normalized size = 1.1 \begin{align*}{\frac{1}{f{b}^{2}a \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ( -{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ){a}^{2}{d}^{2}f+2\,{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) abcdf-{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ab{d}^{2}e+{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ab{d}^{2}e+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ){a}^{2}{d}^{2}f-2\,{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) abcdf+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ){b}^{2}{c}^{2}f \right ) \sqrt{{\frac{f{x}^{2}+e}{e}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x)

[Out]

(-EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a^2*d^2*f+2*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*c*d*f-El
lipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*d^2*e+EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*b*d^2*e+Elliptic
Pi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*a^2*d^2*f-2*EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2
)/(-d/c)^(1/2))*a*b*c*d*f+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b^2*c^2*f)*((f*x^2+e)/e
)^(1/2)*((d*x^2+c)/c)^(1/2)*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/a/b^2/f/(-d/c)^(1/2)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}{{\left (b x^{2} + a\right )} \sqrt{f x^{2} + e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(3/2)/((b*x^2 + a)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c + d x^{2}\right )^{\frac{3}{2}}}{\left (a + b x^{2}\right ) \sqrt{e + f x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(3/2)/(b*x**2+a)/(f*x**2+e)**(1/2),x)

[Out]

Integral((c + d*x**2)**(3/2)/((a + b*x**2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )}^{\frac{3}{2}}}{{\left (b x^{2} + a\right )} \sqrt{f x^{2} + e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(3/2)/(b*x^2+a)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x^2 + c)^(3/2)/((b*x^2 + a)*sqrt(f*x^2 + e)), x)